3.572 \(\int \frac {1}{\sqrt {x} \sqrt {a+b x}} \, dx\)

Optimal. Leaf size=28 \[ \frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )}{\sqrt {b}} \]

[Out]

2*arctanh(b^(1/2)*x^(1/2)/(b*x+a)^(1/2))/b^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {63, 217, 206} \[ \frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )}{\sqrt {b}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[x]*Sqrt[a + b*x]),x]

[Out]

(2*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[a + b*x]])/Sqrt[b]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {x} \sqrt {a+b x}} \, dx &=2 \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\sqrt {x}\right )\\ &=2 \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt {a+b x}}\right )\\ &=\frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )}{\sqrt {b}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 50, normalized size = 1.79 \[ \frac {2 \sqrt {a} \sqrt {\frac {b x}{a}+1} \sinh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{\sqrt {b} \sqrt {a+b x}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[x]*Sqrt[a + b*x]),x]

[Out]

(2*Sqrt[a]*Sqrt[1 + (b*x)/a]*ArcSinh[(Sqrt[b]*Sqrt[x])/Sqrt[a]])/(Sqrt[b]*Sqrt[a + b*x])

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 57, normalized size = 2.04 \[ \left [\frac {\log \left (2 \, b x + 2 \, \sqrt {b x + a} \sqrt {b} \sqrt {x} + a\right )}{\sqrt {b}}, -\frac {2 \, \sqrt {-b} \arctan \left (\frac {\sqrt {b x + a} \sqrt {-b}}{b \sqrt {x}}\right )}{b}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[log(2*b*x + 2*sqrt(b*x + a)*sqrt(b)*sqrt(x) + a)/sqrt(b), -2*sqrt(-b)*arctan(sqrt(b*x + a)*sqrt(-b)/(b*sqrt(x
)))/b]

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(b*x+a)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.00, size = 48, normalized size = 1.71 \[ \frac {\sqrt {\left (b x +a \right ) x}\, \ln \left (\frac {b x +\frac {a}{2}}{\sqrt {b}}+\sqrt {b \,x^{2}+a x}\right )}{\sqrt {b x +a}\, \sqrt {b}\, \sqrt {x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(1/2)/(b*x+a)^(1/2),x)

[Out]

((b*x+a)*x)^(1/2)/x^(1/2)/(b*x+a)^(1/2)*ln((b*x+1/2*a)/b^(1/2)+(b*x^2+a*x)^(1/2))/b^(1/2)

________________________________________________________________________________________

maxima [B]  time = 2.95, size = 41, normalized size = 1.46 \[ -\frac {\log \left (-\frac {\sqrt {b} - \frac {\sqrt {b x + a}}{\sqrt {x}}}{\sqrt {b} + \frac {\sqrt {b x + a}}{\sqrt {x}}}\right )}{\sqrt {b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

-log(-(sqrt(b) - sqrt(b*x + a)/sqrt(x))/(sqrt(b) + sqrt(b*x + a)/sqrt(x)))/sqrt(b)

________________________________________________________________________________________

mupad [B]  time = 0.03, size = 30, normalized size = 1.07 \[ -\frac {4\,\mathrm {atan}\left (\frac {\sqrt {a+b\,x}-\sqrt {a}}{\sqrt {-b}\,\sqrt {x}}\right )}{\sqrt {-b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(1/2)*(a + b*x)^(1/2)),x)

[Out]

-(4*atan(((a + b*x)^(1/2) - a^(1/2))/((-b)^(1/2)*x^(1/2))))/(-b)^(1/2)

________________________________________________________________________________________

sympy [A]  time = 1.10, size = 22, normalized size = 0.79 \[ \frac {2 \operatorname {asinh}{\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}} \right )}}{\sqrt {b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(1/2)/(b*x+a)**(1/2),x)

[Out]

2*asinh(sqrt(b)*sqrt(x)/sqrt(a))/sqrt(b)

________________________________________________________________________________________